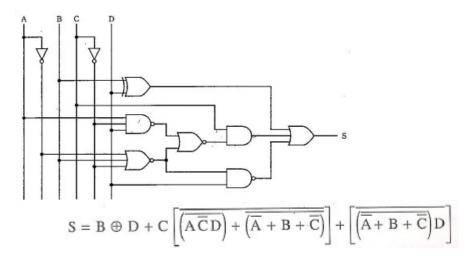
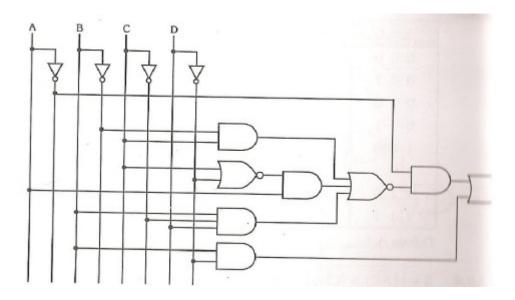

Lista 5 – Portas Lógicas

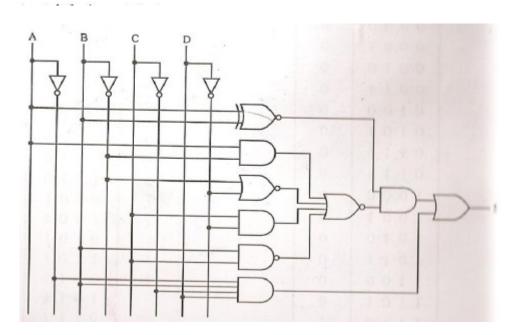
1 – Determine a expressão dos circuito:



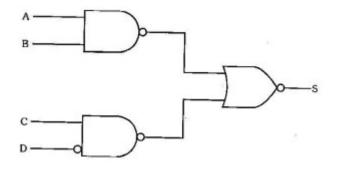
2 – Determine a expressão dos circuito:


$$S = \left[\overline{\left(\overline{B} \, \overline{D} + A \right)} \left(\overline{B} \, D + CD \right) \right] \left[\overline{C} + \left(\overline{A} + C \right) \left(\overline{B} \, \overline{D} \right) \right]$$

3 – Determine a expressão dos circuito:


4 – Desenhe o circuito que representa a expressão:

$$S = \overline{A}.\overline{[\overline{B}.C + A.(\overline{C + \overline{D}}) + B.\overline{C}.D]} + B.\overline{D}$$



5 – Desenhe o circuito que representa a expressão:

$$S = (A \odot B) \cdot \overline{[A.\overline{B} + (\overline{B} + \overline{D}) + C.\overline{D} + \overline{(B.C)}]} + \overline{A} \cdot B.\overline{C}, D$$

6 – Escreve a expressão do circuito e determine sua tabela verdade:

$$S = \overline{(\overline{AB}) + (\overline{C\overline{D}})}$$

A	В	C	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

7)

Prove que: $A \odot (B \oplus C) = A \oplus (B \odot C)$.

ABC	A ⊙ (B ⊕ C)	A ⊕ (B ⊙ C)
0 0 0	1	1
0 0 1	0	0
0 1 0	0	0
0 1 1	1	1
100	0	0
101	1	1
1 1 0	1	1
1 1 1	0	0

Determine a expressão booleana a partir da tabela

A	В	\mathbf{C}_{\parallel}	S
0	0	0	1
0	. 0	1	0
0	1	0	0
0	1	1	1

$$S = \overline{A} \ \overline{B} \ \overline{C} + \overline{A} \ B \ C + A \ \overline{B} \ \overline{C} + A B C$$