Sistemas de Numeração

Conceitos de Aritmética Computacional

1. Introdução

- O homem, através dos tempos, sentiu necessidade da utilização de sistemas numéricos. Existem vários, tais como decimal, binário, octal e hexadecimal.
- Ao longo da história, vários sistemas de numeração foram criados, muitos com formatos totalmente diferentes do que temos hoje.
- O sistema decimal é sem dúvidas o mais importante. Mas na computação, sistemas com base binária e hexadecimal também possuem grande relevância.

2. Sistema Binário

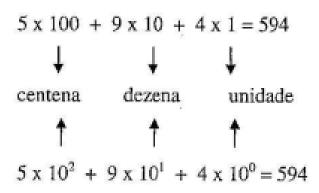
- O sistema binário possui apenas dois algarismos, o 0 (zero) e 1. Todos os números são formados apenas por estes dois algarismos.
- Mas fica a pergunta, como representar o número 2, se temos apenas 0 e 1?
- A resposta é simples, no sistema decimal também temos números de 0 até 9. Representamos o 10 juntando 1 (que representa o agrupamento de 1 dezena) e o 0 (agrupamento de 0 unidades).
- No sistema binário, é a mesma lógica, dois é representado por 10 (1 é o grupo de dois elementos e 0 representa nenhuma unidade).

2. Sistema Binário

• A tabela abaixo mostra a representação de alguns números binários:

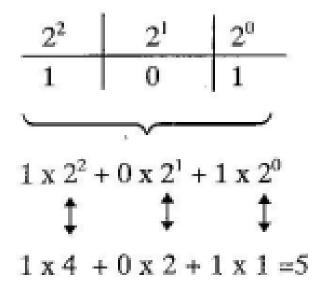
DECIMAL	BINÁRIO						
0	0						
1	1.						
2	10						
3	11						
4	100						
5	101						
6	110						
7	111						
8	1000						
9	1001						

• Para explicar como funciona a conversão vamos utilizar um exemplo com o sistema decimal, no caso o 594.



Esquematicamente, temos:

• Para conversão de binário, utilizamos o mesmo processo. Por exemplo, o binário 101 é 5 em decimal:



• Exercícios - Converta os números binários a seguir para decimal:

- 1.1001
- 2.01110
- 3. 1010
- 4. 1100110001

Resolução:

$$1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} =$$

 $1 \times 8 + 1 \times 1 = 9_{10} \therefore 1001_{2} = 9_{10}$

$$1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} =$$

$$8 + 4 + 2 + 0 = 14_{10}$$
 : $1110_2 = 14_{10}$

$$\begin{array}{c|c|cccc}
2^3 & 2^2 & 2^1 & 2^0 \\
\hline
1 & 0 & 1 & 0 \\
1 \times 2^3 + 1 \times 2^1 = 10_{10} \therefore 1010_2 = 10_{10}
\end{array}$$

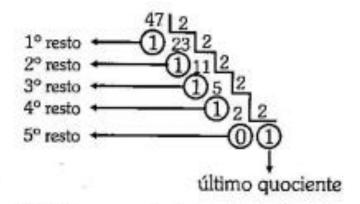
$$1 \times 2 + 1 \times 2 = 10_{10} \times 1010_2 = 10_{10}$$

$$1 \times 2^{9} + 1 \times 2^{8} + 1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{0} =$$

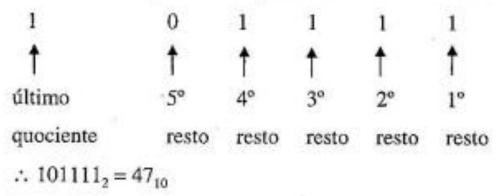
$$1 \times 512 + 1 \times 256 + 1 \times 32 + 1 \times 16 + 1 \times 1 = 817_{10}$$

4. Conversão do Sistema Decimal para Binário

• Para a conversão basta dividir o número decimal por 2 até que não seja mais possível, como mostra o exemplo abaixo com o número 47:



O último quociente será algarismo mais significativo e ficará colocado à esquerda. Os outros algarismos seguem-se na ordem até o 1º resto:



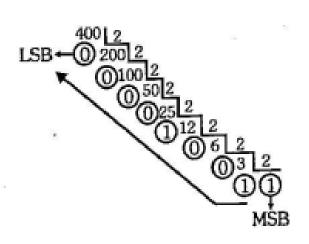
4. Conversão do Sistema Decimal para Binário

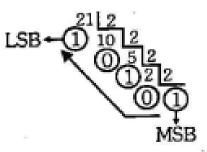
• Exercícios - Converta os números decimais em binário:

- 1.400
- 2.21
- 3.552
- 4.715

4. Conversão do Sistema Decimal para Binário

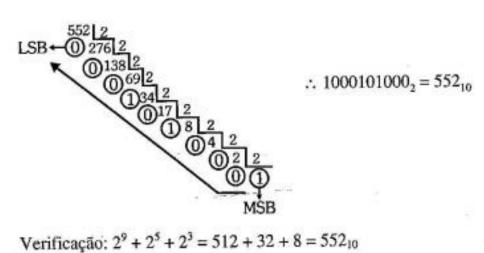
Resolução:

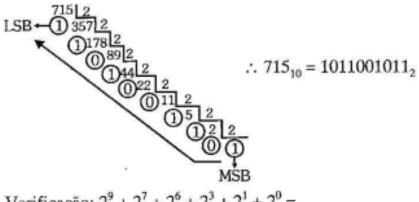




 $\therefore 21_{10} = 10101_2$

Verificação: $1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0 = 21$





Verificação: $2^9 + 2^7 + 2^6 + 2^3 + 2^1 + 2^0 = 512 + 128 + 64 + 8 + 2 + 1 = 715_{10}$

5. Conversão de Binário Fracionário em Decimal

• Até agora, trabalhamos apenas com números inteiros. Para entender como funciona um número fracionário, vamos usar como exemplo um número decimal 10,5:

da tabela resulta:
$$1 \times 10^{1} + 0 \times 10^{0} + 5 \times 10^{-1} = 10,5$$

Para números binários agimos da mesma forma. Para exemplificar vamos transformar em decimal o número 101,101₂:

podemos escrever:

$$1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times \frac{1}{2} + 0 \times \frac{1}{4} + 1 \times \frac{1}{8} =$$

$$4 + 1 + 0.5 + 0.125 = 5.625$$

$$101,101_2 = 5,625_{10}$$

5. Conversão de Binário Fracionário em Decimal

• Exercícios - Converta os número binários fracionários em decimal:

- 1. 10,8125
- 2. 111,001
- 3. 100,11001

5. Conversão de Binário Fracionário em Decimal

Resolução:

 $\therefore 1010,1101_2 = 10,8125_{10}$

Converta o número binário 111,001, em decimal.

$$1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} =$$

$$4 + 2 + 1 + 0.125 = 7.125_{10}$$
 : $111.001_2 = 7.125_{10}$

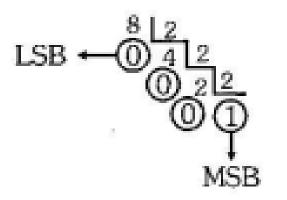
Converta o número 100,110012 em decimal.

$$1 \times 2^{2} + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-5} =$$

$$4 + 0.5 + 0.25 + 0.03125 = 4.78125_{10}$$

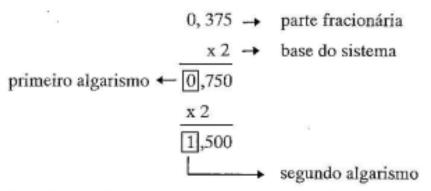
$$\therefore$$
 100,11001₂ = 4,78125₁₀

• Essa conversão ocorre em duas etapas: Primeiro calcula a parte inteira, em seguida a parte decimal. Como exemplo, vamos converter 8,375 em binário:



$$3_{10} = 1000_{2}$$

• Para parte fracionária, faremos sucessivas multiplicações pela base (2), até atingir zero:



Quando atingirmos o número 1, e a parte do número após a vírgula não for nula, separamos esta última e reiniciamos o processo:

Assim sendo, podemos escrever: $0.011_2 = 0.375_{10}$

Para completarmos a conversão, efetuamos a composição da parte inteira com a fracionária:

$$1000,011_2$$
 : $8,375_{10} = 1000,011_2$

• Exercícios - Converta os números decimais fracionários para binário:

- 1.4,8
- 2.3,380
- 3.57,3

• Resolução: 4,8

O primeiro passo é transformar a parte inteira do número: 410 = 1002.

O próximo passo é converter a parte fracionária utilizando a regra já explicada:

Por atingir o valor, separamos a parte posterior à vírgula e reiniciamos o processo:

$$0,6$$

$$x 2$$
segundo algarismo $\leftarrow \boxed{1,2}$

Novamente, reiniciamos o processo:

$$0,2$$

$$x \ 2$$
terceiro algarismo $\leftarrow \boxed{0,4}$

$$x \ 2$$
quarto algarismo $\leftarrow \boxed{0,8}$

Podemos notar que o número 0,8 tornou a aparecer, logo se continuarmos o processo, teremos a mesma seqüência já vista até aqui. Este é um caso equivalente a uma dízima.

Temos, então:

logo: $4,8_{10} = (100,1100110011001100...)_2$

• Resolução: 3,380

Converta número 3,380 em binário.

Conversão da parte inteira:

$$3_{10} = 11_2$$

Conversão da parte fracionária:

$$4^{\circ} \leftarrow \frac{x \ 2}{0,08}$$

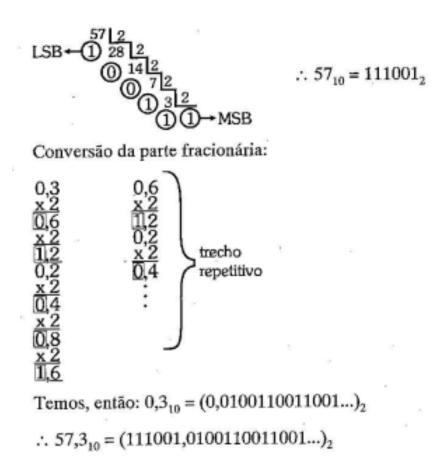
No caso, temos:

$$0.011000010_2 = 1 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-8} = 0.37890625_{10}$$

Se aproximarmos o número decimal em duas casas, teremos 0,38, logo, para uma precisão de duas casas decimais é suficiente que tenhamos seguido o método até aí. Podemos escrever, então:

$$0.38_{10} = 0.01100001_2$$
 : $3.38_{10} = 11.01100001_2$

• Resolução: 57,3



7. Sistema Octal

• O sistema Octal (base 8) é formado pelos algarismos 0,1,2,3,4,5,6 e 7. A lógica octal é similar a binária, entretanto ele é pouco utilizado na prática. A tabela abaixo mostra alguns exemplos:

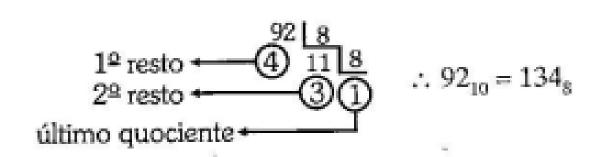
DECIMAL	OCTAL						
0	0						
1	· 1						
2	2						
3	3						
4	4						
5	5						
6	6						
7	7						
. 8	10 11						
9							
10	12						
11	13						
12	14 15 16 17						
13							
14							
15							
16	20						

8. Conversão de Octal para Decimal

• A conversão é muito similar ao caso do sistema binário. Como exemplo, vamos converter 144 (na base octal) para decimal:

9. Conversão de Decimal para Octal

• A conversão também é por divisão sucessiva por 8. Como exemplo, vamos converter 92 (base decimal) para octal:



10. Conversão de Octal para Binário

• É uma conversão bastante simples. Por exemplo, vamos converter 27 (base octal) para binário. Para isso, basta converter os algarismos separadamente e depois fazer o agrupamento:

$$\frac{2}{010}$$
 $\frac{7}{111}$

$$\therefore 27_8 = 10111_2$$

11. Conversão de Binário para Octal

• Neste caso, vamos aplicar o processo inverso. Basta separar os binários da direita para esquerda em grupos de 3 bits, e fazer a conversão individual para octal, como mostra o exemplo de conversão do número binário 110010 para octal:

110 010

Efetuando, agora, a conversão de cada grupo de bits diretamente para o sistema octal, temos:

O número convertido será composto pela união dos algarismos obtidos.

$$110010_2 = 62_8$$

12. Sistema Hexadecimal de Numeração

• Este sistema possui 16 algarismos, sendo sua base igual a 16. Ela é formada pelos algarismos 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E e F. Observe que A representa 10, B representa 11, e assim sucessivamente, até F que representa 15.

• Este sistema é muito utilizado na área de microprocessadores e também no mapeamento de memórias de sistemas digitais. Atualmente é um dos sistemas mais importantes da computação.

DECIMAL -	HEXADECIMAL 0					
0						
1	1					
2	2					
3	3 4					
4						
5	5					
6	6					
· 7	7					
8	8					
9	9					

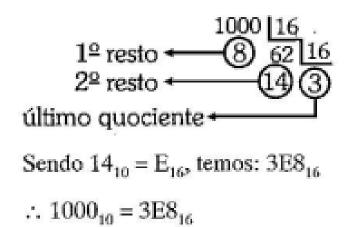
10	A	Τ	
11	В		
12	С		
13	D		
. 14	Е		
15	F		
16	10		
17	11		
18	12		
19	13		
20	14		

12. Conversão de Hexadecimal para Decimal

• A conversão é similar as demais bases numéricas. Como exemplo, vamos converter 3F (base hexadecimal) para decimal:

13. Conversão de Decimal para Hexadecimal

• A conversão é feito por meio de divisões sucessivas por 16. Como exemplo, vamos converter 1000 (base decimal) para hexadecimal:



14. Conversão de Hexadecimal para Binário

 A conversão é similar a do sistema octal para binário, mas neste caso precisamos de 4 bits para representar cada algarismo. Como exemplo, vamos converter C13 (base hexadecimal) para binário:

$$C_{11\overline{00}} \Rightarrow (C_{16} = 12_{10}) \quad \frac{1}{0001} \quad \frac{3}{0011}$$

 $\therefore C13_{16} = 1100000010011_2$

15. Conversão de Binário para Hexadecimal

• Análogo a conversão de binário para octal, mas o agrupamento é de 4bits (ao invés de 3 como no octal). Como exemplo, vamos converter o binário 10011000 para hexadecimal:

$$\underbrace{10011000}_{9} : 10011000_{2} = 98_{16}$$

16. Operações Aritméticas no Sistema Binário

• Na área de microprocessadores, o estudo das operações aritméticas no sistema binário é muito importante para entendimento da arquitetura e de como os circuitos aritméticos funcionam.

O processador faz todos os cálculos utilizando circuitos eletrônicos, principalmente a ULA.
 Cálculos mais complexos podem exigir processadores específicos para esta finalidade, ou a incorporação de coprocessadores aritméticos.

17. Adição no Sistema Binário

Adição é muito similar ao sistema decimal.

Para efetuarmos a adição no sistema binário, devemos agir como numa adição convencional no sistema decimal, lembrando que, no sistema binário, temos apenas 2 algarismos. Temos, então:

Convém observar que no sistema decimal 1 + 1 = 2 e no sistema binário representamos o número 2_{10} por 10_2 . Pela operação realizada, notamos a regra de transporte para a próxima coluna: 1 + 1 = 0 e transporta 1 "vai um".

A operação de transporte também é denominada carry, termo derivado do inglês.

17. Adição no Sistema Binário

 Como exemplo, vamos calcular as soma binárias 11 + 10 e 110 + 111 (ambos representados em binário):

$$\begin{bmatrix} 1 & & & & \\ & 1 & 1 \\ & 1 & 0 \\ \hline 1 & 0 & 1 \end{bmatrix}$$
 1+1=0 e transporta 1

$$11_2 + 10_2 = 101_2$$

Verificação:
$$(3_{10} + 2_{10} = 5_{10})$$

Como outro exemplo, vamos efetuar 1102 + 1112:

$$1+1+1=11\begin{bmatrix} \mathbf{\dot{\psi}\dot{\psi}} \\ 1 & 1 \\ +1 & 1 & 0 \\ \frac{1}{1} & 1 & 1 \\ \hline 1 & 1 & 0 & 1 \end{bmatrix}$$

$$110_2 + 111_2 = 1101_2$$

Verificação:
$$(6_{10} + 7_{10} = 13_{10})$$

18. Subtração no Sistema Binário

A subtração tem algumas regras que precisam ser gravadas:

O método de resolução é análogo a uma subtração no sistema decimal. Temos, então:

Observamos que para o caso 0-1, o resultado será igual a 1, porém haverá um transporte para a coluna seguinte que deve ser acumulado no subtraendo e, obviamente, subtraído do minuendo.

Para exemplificar, vamos efetuar a operação 111, - 100,:

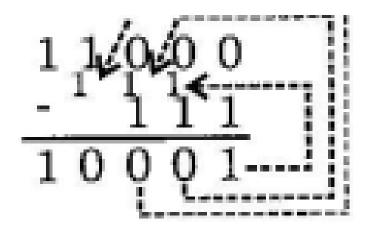
18. Subtração no Sistema Binário

• Para entender na prática a questão do 0-1, vamos fazer o exemplo 1000 – 111 (base binária):

$$\frac{1}{0} \frac{0}{0} \frac{0}{0} \frac{1}{0}$$
transporte anterior
$$11000_2 - 111_2 = 0001_2$$

18. Subtração no Sistema Binário

• Exemplo: 11000-111



19. Multiplicação no Sistema Binário

A imagem abaixo mostra os possíveis resultados das multiplicações:

Procede-se como em uma multiplicação no sistema decimal. Assim sendo, temos:

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

$$1 \times 1 = 1$$

Para exemplificar, vamos efetuar a operação 11010₂ x 10₂:

$$\therefore 11010_2 \times 10_2 = 110100_2$$

19. Multiplicação no Sistema Binário

• Exemplo: 1100 x 11:

• Temos duas formas de representar sinal: Utilizando um **bit de sinal**, ou **complemento de 2.** A primeira forma consiste em utilizar um bit de sinal mais à esquerda para representar se é negativo ou positivo. Se o bit de sinal for 0, é positivo. Se o bit de sinal for 1 é negativo. Essa forma de representação é chamada de **sinal módulo**.

```
Para exemplificar o exposto, vamos representar os números (
+35_{10} e -73_{10} em binário utilizando a notação sinal-módulo:
35_{10} = 100011_2
100011_2 = 0100011_2
1001001_2
1001001_2 = 11001001_2
1001001_2 = 11001001_2
1001001_2 = 11001001_2
1001001_2 = 11001001_2
1001001_2 = 11001001_2
1001001_2 = 11001001_2
1001001_2 = 11001001_2
```

• Já o segundo método consiste em representar os números negativos determinando o complemento de 2 dos números. Para isso, deve ser determinado o complemento de 1 (inverter os bits) e somar 1. No exemplo, vamos representar o –155 em complemento de 2:

• O 155 em binário é 10011011. Vamos determinar o complemento de 1, de pois somar 1 para formar o complemento de 2 e determinar –155:

Número binário: 11001101

Complemento de 1: 00110010

+ 1

Complemento de 2: 0011001

• Observe na tabela abaixo que na notação de complemento de 2 os binários positivos são idênticos ao binário padrão. Apenas os negativos são diferentes (complemento de 1 + 1):

DECIMAL	-9	-8	-7	-6	-5	-4	-3	-2	-1
BINARIO	-1001	-1000	-0111	-0110	-0101	-0100	-0011	-0010	-0001
COMPL DE 2	0111	1000	1001	1010	1011	1100	1101	1110	1111

DECIMAL	0	+1	+2	+3	+4	+5	+6	+7	+8	+9
BINÁRIO	0000	+0001	+0010	+0011	+0100	+0101	+0110	+0111	+1000	+1001
COMPL. DE 2	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

- Outra informação importante é como fazer o processo contrário do complemento de 2 voltar para a representação binária. Para isso, basta fazer o complemento de 2 do número que está em complemento de 2.
- Para exemplificar, vamos voltar o 1011 (-5 na notação de complemento de 2) para binário:

.: Extraindo novamente o complemento de 2 do número 1011₂ obtemos -0101₂ (-5₁₀), que é o mesmo número, porém, na notação normal.